Wednesday, January 4, 2017


HOW THE BRAIN GETS ADDICTED TO GAMBLING
 

In the past, the psychiatric community generally regarded pathological gambling as more of a compulsion than an addiction—a behavior primarily motivated by the need to relieve anxiety rather than a craving for intense pleasure. In the 1980s, while updating the Diagnostic and Statistical Manual of Mental Disorders (DSM), the American Psychiatric Association (APA) officially classified pathological gambling as an impulse-control disorder—a fuzzy label for a group of somewhat related illnesses that, at the time, included kleptomania, pyromania and trichotillomania (hairpulling). In what has come to be regarded as a landmark decision, the association moved pathological gambling to the addictions chapter in the manual's latest edition, the DSM-5, published this past May. The decision, which followed 15 years of deliberation, reflects a new understanding of the biology underlying addiction and has already changed the way psychiatrists help people who cannot stop gambling.

The APA based its decision on numerous recent studies in psychology, neuroscience and genetics demonstrating that gambling and drug addiction are far more similar than previously realized. Research in the past two decades has dramatically improved neuroscientists' working model of how the brain changes as an addiction develops. In the middle of our cranium, a series of circuits known as the reward system links various scattered brain regions involved in memory, movement, pleasure and motivation. When we engage in an activity that keeps us alive or helps us pass on our genes, neurons in the reward system squirt out a chemical messenger called dopamine, giving us a little wave of satisfaction and encouraging us to make a habit of enjoying hearty meals and romps in the sack. When stimulated by amphetamine, cocaine or other addictive drugs, the reward system disperses up to 10 times more dopamine than usual.

Continuous use of such drugs robs them of their power to induce euphoria. Addictive substances keep the brain so awash in dopamine that it eventually adapts by producing less of the molecule and becoming less responsive to its effects. As a consequence, addicts build up a tolerance to a drug, needing larger and larger amounts to get high. In severe addiction, people also go through withdrawal—they feel physically ill, cannot sleep and shake uncontrollably—if their brain is deprived of a dopamine-stimulating substance for too long. At the same time, neural pathways connecting the reward circuit to the prefrontal cortex weaken. Resting just above and behind the eyes, the prefrontal cortex helps people tame impulses. In other words, the more an addict uses a drug, the harder it becomes to stop.

Research to date shows that pathological gamblers and drug addicts share many of the same genetic predispositions for impulsivity and reward seeking. Just as substance addicts require increasingly strong hits to get high, compulsive gamblers pursue ever riskier ventures. Likewise, both drug addicts and problem gamblers endure symptoms of withdrawal when separated from the chemical or thrill they desire. And a few studies suggest that some people are especially vulnerable to both drug addiction and compulsive gambling because their reward circuitry is inherently underactive—which may partially explain why they seek big thrills in the first place.

Even more compelling, neuroscientists have learned that drugs and gambling alter many of the same brain circuits in similar ways. These insights come from studies of blood flow and electrical activity in people's brains as they complete various tasks on computers that either mimic casino games or test their impulse control. In some experiments, virtual cards selected from different decks earn or lose a player money; other tasks challenge someone to respond quickly to certain images that flash on a screen but not to react to others.


A new understanding of compulsive gambling has also helped scientists redefine addiction itself. Whereas experts used to think of addiction as dependency on a chemical, they now define it as repeatedly pursuing a rewarding experience despite serious repercussions. That experience could be the high of cocaine or heroin or the thrill of doubling one's money at the casino. “The past idea was that you need to ingest a drug that changes neurochemistry in the brain to get addicted, but we now know that just about anything we do alters the brain,” says Timothy Fong, a psychiatrist and addiction expert at the University of California, Los Angeles. “It makes sense that some highly rewarding behaviors, like gambling, can cause dramatic [physical] changes, too.”



SOURCE:https://www.youtube.com/watch?v=BF5SzIN63w8
SOURCE:https://www.scientificamerican.com/article/how-the-brain-gets-addicted-to-gambling/

No comments: